Package: FDRestimation 1.0.1

FDRestimation: Estimate, Plot, and Summarize False Discovery Rates

The user can directly compute and display false discovery rates from inputted p-values or z-scores under a variety of assumptions. p.fdr() computes FDRs, adjusted p-values and decision reject vectors from inputted p-values or z-values. get.pi0() estimates the proportion of data that are truly null. plot.p.fdr() plots the FDRs, adjusted p-values, and the raw p-values points against their rejection threshold lines.

Authors:Megan Murray [aut, cre], Jeffrey Blume [aut]

FDRestimation_1.0.1.tar.gz
FDRestimation_1.0.1.zip(r-4.5)FDRestimation_1.0.1.zip(r-4.4)FDRestimation_1.0.1.zip(r-4.3)
FDRestimation_1.0.1.tgz(r-4.5-any)FDRestimation_1.0.1.tgz(r-4.4-any)FDRestimation_1.0.1.tgz(r-4.3-any)
FDRestimation_1.0.1.tar.gz(r-4.5-noble)FDRestimation_1.0.1.tar.gz(r-4.4-noble)
FDRestimation_1.0.1.tgz(r-4.4-emscripten)FDRestimation_1.0.1.tgz(r-4.3-emscripten)
FDRestimation.pdf |FDRestimation.html
FDRestimation/json (API)

# Install 'FDRestimation' in R:
install.packages('FDRestimation', repos = c('https://murraymegan.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/murraymegan/fdrestimation/issues

On CRAN:

Conda-Forge:

statistics

3.65 score 6 stars 15 scripts 305 downloads 2 exports 2 dependencies

Last updated 3 years agofrom:16fcf2b442. Checks:3 OK, 5 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 23 2025
R-4.5-winNOTEFeb 23 2025
R-4.5-macNOTEFeb 23 2025
R-4.5-linuxNOTEFeb 23 2025
R-4.4-winNOTEFeb 23 2025
R-4.4-macNOTEFeb 23 2025
R-4.3-winOKFeb 23 2025
R-4.3-macOKFeb 23 2025

Exports:get.pi0p.fdr

Dependencies:rbibutilsRdpack